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Federal Republic of Germany 
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Abstract. We study the interface behaviour of the two-dimensional Blume-Emery- 
Griffiths model which is described by the Hamiltonian 

An interface is introduced into the system by fixing the spins on opposite boundaries 
in two different states, + 1  and -1. We pay particular attention to the appearance of an 
excess of the third state, 0, in the vicinity of the interface. The net adsorption of the 
non-boundary state is studied near critical, first-order and tricritical transitions. 

Two methods have been used to attack this problem, the Monte Carlo technique and 
a modified version of the interface free energy approximation of Muller-Hartmann and 
Zittartz which is seen to give a surprisingly good description of interface properties in 
three-state systems. 

1. Introduction 

Interfaces between two phases (a, y )  in the presence of a third ( p )  phase have been 
studied both experimentally and theoretically. In particular, it has been found that 
at the, say, a y  interface a p layer may be formed. This effect has been studied 
experimentally, for example, by Moldover and Cahn (1980), and described within a 
classical, phenomenological framework by Widom (1978). Related theoretical studies 
have also been given by e.g. de Gennes (1981) and Abraham and Smith (1982). 
However, it has only been appreciated recently that a similar effect occurs at interfaces 
in microscopic three-state models. In this case an interface is introduced by fixing 
the variables at opposite boundaries in two different states. Using Monte Carlo (MC) 
techniques it has been observed, for the two-dimensional three-state Potts model, 
that an excess of the third, non-boundary state is generated at the interface mostly 
in the form of droplets (Selke and Pesch 1982). The critical behaviour of the net 
adsorption of non-boundary states at the interface has been studied and the singular 
behaviour has been found to be governed by the bulk correlation length in agreement 
with a simple scaling argument (Selke and Pesch 1982, Selke and Huse 1983). These 
results may be of experimental relevance for certain adsorbed monolayer systems (for 
a review see Schick 1981). One should caution, however, that Potts models violate 
Antonoff’s rule (Widom 1975) in contrast to multicomponent fluids, 
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Multicomponent fluids may be modelled in a more realistic manner (Lajzerowicz 
and Sivardiere 1975, Mukamel and Blume 1974) by the Blume-Emery-Griffiths (BEG) 
model (Blume et a1 1971) or its special case, the Blume-Capel (BC) model (Capel 
1966, Blume 1966). Introducing an interface in these spin-1 models one may expect, 
by analogy with the Potts case, the formation of an intermediate layer of non-boundary 
states. Using standard MC techniques (Binder 1979) for the two-dimensional BC model 
we indeed observe this phenomenon. In particular, we study the critical behaviour 
of the interfacial adsorption of non-boundary states associated with different classes 
of bulk phase transitions (second-order, tricritical, first-order). Results are presented 
in 0 2. 

The occurrence of the intermediate layer at the interface provides the clue for the 
modification of the method of Muller-Hartmann and Zittartz (1977) (originally 
devised to map phase diagrams of two-component systems) to treat the two- 
dimensional BEG model; the analogous method for the three-state Potts model is 
presented in Selke and Pesch (1982). In 8 3 we discuss the extent to which this method 
is able to describe the phase diagram of the BEG model. The results, obtained with 
modest numerical effort, are of an accuracy comparable to those predicted by rather 
involved real-space renormalisation-group calculations (Berker and Wortis 1976, 
Burkhardt 1976). Section 4 provides a brief summary. 

2. Monte Carlo results 

The two-dimensional BEG model (Blume et al 1971) is described by the Hamiltonian 

where (ij) indicates summation over nearest neighbours on a square lattice of size 
N x N .  The terms on the right-hand side represent the usual bilinear exchange (J > 0), 
biquadratic exchange (K > 0) and crystal-field ( D  > 0) interactions. 

The Monte Carlo results described here are restricted to the case K/J = 0. This 
corresponds to the BC model (Capel 1966, Blume 1966), which was originally suggested 
to describe an Ising system of spin-1 ions subject to a zero-field splitting. The model 
is known to display a second-order transition for 0 s D/J < (D/J ) r ,  tricritical point at 
(D/J) t  (using MC renormalisation-group techniques (D/J ) t  has been determined very 
precisely as D, 2= 1.931 (Landau and Swendsen 1981,1983)) and a first-order transition 
in the range (DIJ), < D/J s 2. 

Our MC results confirm this picture (see figure 11 in 0 3) .  The critical temperature, 
T,, of the second-order line was obtained from a finite size analysis (6 =s N s 40) of 
the location of the maximum in the specific heat. The typical length of a run for a 
given set of parameters (D/J, RBTIJ) was between 5 x lo3 and lo4 Monte Carlo steps 
per site (MCSIS). Our estimates of T, (N = a) agree very well with previous MC results 
(Arora and Landau 1971, Jain 1976). Accurate determination of T, at the first-order 
transitions is considerably more difficult. We compared three different methods: (i) 
‘rule of equal areas’ of the hysteresis loop; (ii) matching of the free energy of the 
low-temperature and high-temperature branch (Binder 1982, Liebmann 1982); (iii) 
disentanglement of MC configurations with half of the spins in the high-temperature 
phase, Si = 0, and the other half in the low-temperature phase, for example Si = 1 
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(Creutz et a1 1979). In this way we obtained consistent and apparently reliable 
estimates with small error bars. 

To introduce an interface into the BC model the spins on opposite boundaries 
were fixed in the two different non-zero states, *l. At zero temperature, for D/J < 1, 
the interface is a straight line separating the ‘up’ and ‘down’ domains. It is interesting 
to note that for 1 < D/J, however, the ground-state energy is lowered by the insertion 
of a Si = 0 monolayer at the interface. By examining typical equilibrium MC configur- 
ations at non-zero temperatures, as shown in figure 1, it is seen that an excess of the 
non-boundary state, Si = 0, is included at the interface. The interfacii adsorption of 
zeros occurs in a layer-like fashion as expected on the basis of single spin-flip energy 
considerations. This should be compared to the droplet-like adsorption of non- 
boundary states in Potts models (Selke and Pesch 1982) which occurs because all 
states are energetically equivalent. 

Fipre 1. Typical equilibrium Monte Carlo configurations showing the excess of the 
non-boundary state, S, = 0, (shown in black) at the interface. The temperatures and fields 
are chosen so that the system is close to ( a )  the critical temperature and ( b )  the tricritical 
point. Note that in ( b )  the width of the interface layer is increased because the system is 
close to three-phase coexistence. In ( a )  the value of D/J = 0 and k B T / J  = 1.52 and in 
i b )  D/J = 1.92 and kBTJJ = 0.64. 

The thickness of the insertion layer at the interface depends on the value of D/J, 
the size of the system, N,  and the temperature. To describe the phenomenon quantita- 
tively we define the net adsorption per unit length of the interface, by analogy to the 
Potts case, as 

1 w - - c ((SO,S,)l :-I - @O,S, ) I  :1) (2.2) 

where the angle brackets denote thermal averages and the subscripts 1 : -1 and 1 : 1 

O-N i 
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refer to systems with and without interfaces, respectively. WO may be also considered 
as a measure of the thickness of the idealised adsorption layer at the interface, which 
contains only spins Si = 0. The MC results were obtained by studying systems of sizes 
of N x N with 6 s N s 100. All data points are averages over runs of at least 5 x lo3 
MCS/S; in case of large thermal fluctuations close to T,, several runs were done for a 
given set of parameters (D/J, kBT/J, N ) .  

The non-boundary states generated at the interface involve an energy cost which 
is compensated by a gain in entropy. This compensation is clearly seen in the 
temperature dependence of WO. The behaviour of WO as a function of temperature 
and the size of the system, N, is shown in figures 2 and 3. WO displays a maximum 
near T, the height of which increases with increasing D/J. This is easily understood 
by recalling that the crystal field interaction favours spins in the state Si = 0. The 
height of the peak also increases with increasing N and the maximum occurs at a 
value of the temperature which approaches T,, albeit rather slowly, with increasing 
N. To investigate this point further in figure 4 the size dependence is shown for 
D/J  = 0 where the critical temperature is known accurately from high-temperature 
series expansions to be kBTc/J 2= 1.69 (Fox and Guttmann 1973, Burkhardt and 
Swendsen 1976). Figure 4 strongly suggests that the maximum of WO occurs at T, in 
the thermodynamic limit. 

O a t  X-X1 
30 c X ’ I  

2.0 
WO 

1 .o 

0 
k,T/J k T/J 

Figure 2. Net adsorption, WO, of the non-boundary 
state of the interface as a function of temperature, 
k,T/J, and the system size, N. The values of N are: 
x, 40; A, 20; 0, 40; 0, 10; 0, 20. D/J=O.8 for 
the broken curves and D/J  = 0 for the full curves. 

Figure 3. Net adsorption, WO, of the non-boundary 
state at the interface as a function of temperature, 
k B T / J ,  and the system size, N. The values of N are: 
x ,40 ;A ,10 ;0 ,40 ;0 ,10 .  D/J=1.9forthebroken 
curves and D/J = 1.6 for the full curves. 

Note also, that for T > T,, WO approaches zero rather rapidly, particularly for 
large values of N. This is consistent with the vanishing of the interface above T,; 
indeed, we expect that in the thermodynamic limit the interface has zero width for 
all T > T,. Note that we may determine T, with modest numerical effort quite reliably 
from the point of intersection of the curves with different N (see figures 2 and 3). 

The most interesting behaviour of WO occurs near T,. We therefore studied both 
the temperature and the size dependence of the net adsorption WO in the critical 
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Figure 4. Size dependence of the height of the maximum in the net adsorption, W r ,  
for D / J  = 0. The estimated value of W r  for N = CC agrees well with the high- 
temperature series expansion result (HTSE), thus providing evidence that the maximum 
of WO occurs at the critical temperature in the thermodynamic limit. 

region. To analyse the size dependence (and establish a possible divergence of WO 
at T,) we determined the height of WO, Wl;"", for chosen values of D/J as a function 
of N .  Results are shown in figures 5 and 6 for D/J S ( D / J h -  1.931 (Landau and 
Swendsen 1981, 1983). For D/J = 0, 0.4, 0.8, 1.2, 1.6 and 1.8 Wl;"" ( N )  can be 

ON 
x-x- 1 2  

08 

Figure 5. Size dependence of the maximum value 
of the net adsorption, W r ,  for chosen values of 
the crystal field, D/J.  

t 

1.0 1 I ' I I 
1 m 1 1  1 

60 40 % 
IIN 

Figure 6. Size dependence of the maximum value 
of the net adsorption, W y ,  for chosen values of 
the crystal field, D/J. Note the change in the 
behaviour of the curves as the tricritical point is 
approached. 
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expressed in a simple form 

Wrax (N) = Wrax (CO) - C ( D / J ) / N  1 0 s N a 6 0  (2.3) 
where W y  (CO) is finite and both WTEX (00) and the coefficient C increase monotoni- 
cally with D/J.  Corrections to (2.3) appear very small. Extrapolating (2.3) to the 
thermodynamic limit indicates that the net adsorption does not diverge at the second- 
order transition of the two-dimensional Blume-Cape1 model. This is in contrast to 
the Potts case (Selke and Huse 1983). However, the size dependence of ,fax changes 
drastically as the tricritical point is approached. Results for D / J  = 1.9, 1.92 and 1.931 
are shown in figure 6. For 10 s N s 60 the data can be fitted by 

WFEx ( N )  -In N or N" with a G 0.2 (2.4) 
as demonstrated in figure 7. Note that the slope, d( WFaX)/d(ln N), decreases appreci- 
ably with increasing N giving an upper bound for a :  similarly for w (see below). It 
seems likely that the qualitative change in the size dependence can be attributed to 
a crossover effect resulting from the closeness of the tricritical point. Additional 
evidence for a divergent net adsorption at the bulk value of T, may be obtained by 
analysing the critical temperature dependence. At D/J = 1.92 (for fixed N = 60) we 
find a logarithmic divergence (or a power-law behaviour with a small exponent) in 
WO as a function of the reduced temperature t = (Tc- T ) / T , :  

O N  = 

I- 1931 

L 4 6 10 20 40 60 100 

N 

Figure 7. To show that the maximum value of the net adsorption, W y ' ,  varies logarithmi- 
cally with the size of the system, N, for three values of the crystal field, D/J, which lie 
close to the tricritical point. 

Wo(t) -In t or t-" with w d 0.1 (2.5) 
in the range 2 x lo-* C t s 2 x lo-'. These results are displayed in figure 8. Again, 
one may interpret this divergence as due to the closeness of the tricritical point, as 
confirmed by data at D/J = 1.931 (N = 40), where Wo-ln t or I-" with w CO.15. 

Although such different behaviour is seen near the tricritical and critical transitions 
we must caution, as with all MC studies, that it may be possible that results have not 
been obtained close enough to T, or for sufficiently large N to display the true 
asymptotic behaviour. 

The analysis of the critical behaviour of WO at the first-order transitions, (DIJ), < 
D/Js2,  turns out to be very difficult, mainly due to the bulk hysteresis. It will be 
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x-x- x-x-x- 

2 L 6 10 20 40 0 0 1  002 003 01 02 
I l t  t 

Figure 8. To show that the net adsorption, WO, Figure 9. To show that the net adsorption, WO, 
varies logarithmically with the reduced temperature, varies as r -" ,  where r = (Tc -  T ) / T , ,  and o = 
r = (Tc -  T ) / T , ,  for avalue of the crystal field, D/J = 0.33 k0.03 for two values of the crystal field, D/J, 
1.92, which lies close to the tricritical point (N = 60). for which the transition is first order. The values of 

D/J are 0, 1.96 and X ,  1.98. N is 40. 

given elsewhere (Selke 1983). Here we summarise the two main conclusions based 
on data for D/J = 1.96 and 1.98. Choosing N = 40 for both values of D/J 

Wo(t) - tCW with o = 0.33 f 0.03 (2.6) 

for the decade 2 x lo-'< t d 2 x lo-'. The results on which this conclusion is based 
are shown in figure 9. We also find 

WO(TC, N )  -N"  with a = 0.7 f 0.05. (2.7) 

This result is based on data for 6 s N  s 80 for both D/J = 1.96 and 1.98. A qualitative 
argument can be given which yields w = 5 (Huse 1982) and an exactly soluble model, 
similar to that described by Abraham and Smith (1982), gives w = 5 (Abraham 1982). 

3. Analytic results 

In this section, the two-dimensional BEG model described by the Hamiltonian (2.1) 
is studied, using a modified version of the Muller-Hartmann-Zittartz (MHZ) approxi- 
mation (1977) in which a transition is identified by the vanishing of the interface free 
energy. Our aim is to investigate the accuracy and applicability of the method 
throughout the phase space (5, K, D ) .  

The interface is introduced into the system by fixing the spins on opposite boun- 
daries to take the value Si = +1 and Si = -1 respectively. To obtain good estimates 
for the phase boundaries those configurations where a layer of the third state Si = 0 
is allowed to intervene at the interface must be taken into account in the calculation 
of the free energy (Selke and Pesch 1982). The calculation is rendered tractable by 
neglecting both overhangs at the interface and islands of boundary states inside the 
intervening layer. 

The notation we shall use to describe the interface is shown in figure 10. Two 
integers are needed to specify the position of the interface in each column. -CO s mi s 
CO denotes the position of the boundary of the domain, Si = +1, relative to a reference 
line in the middle of the system and 0 s ni s CO the width of the intervening layer, 
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Figure 10. Schematic diagram of the interface region defining the notation used in the 
Muller-Hartmann-Zittartz approximation. 

Si = 0. Then, defining Ami = mi+l -mi, the total energy of a given interface configur- 
ation is 

E>(nl, n,+l, Am) =J(-2Am -n, +n,+l)+K(n,  +n,+d Am < -n, 

J(-Am +n,+l)+K(-Am +n,+l) 

Jn, + Kn, 

J (Am +n , )+K(Am +n , )  

J(2Am +n, -n ,+l)+K(n,  +n,+l) nIil S Am (3.2) 

-n, 6 Am < -inl - n,+d 

-(nl - n , + l ) s A m  < O  

0 s Am < n,+l 

and 

E,(n,, n,+l, Am) =J(-2Am -n, +n,+d+K(n,  +n,+l) Am S n ,  

-n, 6 A m  CO J(-Am +n,+l)+K(-Am +n,+l) 

Jn,+l +Kn,+l OGAm <n,+l-n, 

J(Am +n , )+K(Am +n , )  

J(2Am +n, -n ,+l)+K(n,  +n,+l) 

n,+l -n,  s Am < n,+l 

(3.3) n,+l s Am. 

The free energy of the interface is then defined in the usual way by 

1 F = -kBT lim -In 1 exp(-E/kBT). 
N+W N ( m , . n , )  

(3.4) 

The summation over mi and mi+l can be performed easily, because the sum is a 
function only of the difference Am = mi+l  -mi .  The resulting expression for E depends 
only on ni and ni+l  and hence the configuration sum in (3.4) can be replaced by a 
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product of transfer matrices, T, 

1 
N-m N F = - k B T  lim -In T“ 

where 

Tij = exp(-J(j  + 1) - 
i 2 j  

K(j+ l ) -8 , , o ( J -K)+Dj ) (  a i < j  

(3.5) 

[(I  +e-”+K’)(1 -e-(’+K’l)/(1 -e-”+K))+(j-i)]. (3.9) + e - ( J+K) i  

In the thermodynamic limit the largest eigenvalue of T, ho, dominates the product 
in (3.5) and this equation simplifies to 

F = -kBT In ho.  (3.10) 

Therefore, the interface free energy is easily obtained from a numerical calculation 
of the largest eigenvalue of T. Away from the first-order phase boundary only a small 
number of elements of T need be considered to gain convergence of the eigenvalue. 

For K / J  = 0 the BEG model reduces to the BC model. As described in 9: 2 the phase 
diagram exhibits a first-order transition line (which may, in fact, be identified as a 
triple line where three phases co-exist by studying the model in a field (Kaufman et 
a1 1981)) and a critical line which join at the tricritical point. In figure 11 the results 
of the modified MHZ method are shown, together with results from a position space 
renormalisation group (Berker and Wortis 1976) and from the MC study. 

Also indicated are the MC renormalisation-group determination of the position of 
the tricritical point at (D/J),=1.931 (Landau and Swendsen 1981, 1983) and the 
estimate for the transition temperature of the spin-1 Ising model (D/J = 0) based on 
a high-temperature series expansion (Fox and Guttmann 1973, Burkhardt and Swend- 
sen 1976). To study the effect on the approximation of allowing a layer of non- 
boundary states at the interface results were also obtained for systems in which the 
width of the interfacial layer was restricted to less than no spins in each column. 

The phase boundary obtained for no = 2 is shown in figure 11. For large enough 
values of no the phase diagram is in good agreement with previous results. In particular, 
the rapid change of direction of the phase boundary in the vicinity of the tricritical 
point is reproduced and the approximation is seen to be capable of predicting a line 
of three-phase coexistence. 

For small no, however, the triple line is not observed; this is to be expected as we 
are suppressing three-phase coexistence by restricting the width of the boundary layer 
of zeros at the interface. Indeed, an analytic calculation of the value of D/J at the 
first-order transition at zero temperature gives the exact result only if the interface 
layer is allowed to be infinitely wide (no  = CO). 

It is of particular interest to look at the behaviour of the free energy near the 
triple line. Results for kBT/J = 0.5 where the transition is strongly first order are 
shown in figure 12 for no = 2, 10 and 40. Although the free energy remains analytic 

(i) K / J  = 0 
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c 

Ferro 

t t l  
0 0 4  0 8  1 2  1 6  2 0  

O/J 011 

Figure 11. Phase diagram of the BEG model for 
K/J  = 0 calculated using the modified Muller-Hart- 
mann and Zittartz approximation (I). The results 
are compared to those obtained using the same 
approximation but allowing no more than one spin 
of value Si = 0 to interpolate at the interface in any 
column (11). Results from a real-space renormalisa- 
tion-group calculation (111) and Monte Carlo simula- 
tions (IV) are also displayed. The arrows denote 
the positions of the tricritical point and of the high- 
temperature series expansion result for the transi- 
tion temperature of the spin-1 king model. 

Figure 12. Dependence of the interface free energy 
calculated using the modified MHZ approximation 
on the crystal field for a value of the temperature 
for which the transition is first order. The depen- 
dence of the results on no, the maximum allowed 
width of the interface within each column, is dis- 
played. kBT/J = 0.5 and K/J  = 0. 

as it passes through zero, it quickly sharpens as no is increased, mirroring the free 
energy discontinuity expected at the transition. 

For K / J  # 0 the model displays a rich phase diagram containing critical lines, triple 
lines, critical end-points and a Potts point (Berker and Wortis 1976). We studied in 

(ii) K/J  # 0 

2.4 c 

O 8  t 08 

I 
$m 0 2 2 4 6 8 i 

I 
I 
I 
I 
i 
I 
I 
i 

0 2 4 6 8 
t I I I I 

O / J  

Figure 13. Phase diagram of the BEG model for 
K/J  = 3 calculated using the modified MHZ approxi- 
mation. The exact result for the three-state Potts 
transition is shown by a cross. 

0.8 
$m I t 

0 4 8 12 16 
ON 

Figure 14. Phase diagram of the BEG model for 
K/J  = 6 calculated using the modified MHZ approxi- 
mation. The line of two-phase coexistence which is 
expected to extend beyond the end of the triple line 
is not seen within this approximation. 
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detail two cross-sections of the phase diagram, K / J  = 3 and K/J = 6.  The first case, 
K/J = 3, is of interest because the critical and triple lines join at a Potts tricritical 
point. The phase diagram predicted by the MHZ approximation is shown in figure 13 
together with the exact result for the transition temperature of the three-state Potts 
model. The critical boundary is almost independent of the value of no except near 
the Potts point. This indicates that the appearance of the interface is unfavourable 
as expected for large values of K. To obtain an accurate estimate for the position of 
the triple line results for no = 00, obtained by extrapolation, were used together with 
the exact zero-temperature value which can be extracted analytically from the approxi- 
mation. 

For K/J = 6 we expect that the tricritical point has been replaced by a critical end- 
point (Berket and Wortis 1976) and that a line of two-phase coexistence extends 
beyond the end of the triple line. As usual, it is not possible to identify two-phase 
coexistence within the MHZ approximation. However, as shown in figure 14, the critical 
and triple lines are readily identified. 

4. Summary 

In this paper we have presented the results of an investigation of the interface properties 
of the two-dimensional BEG model. 

In particular, for the special case of the BC model, we have found, using MC 
techniques, that the net adsorption of the non-boundary state at the interface, WO, 
depends on the class of the bulk phase transition. WO remains finite on approach to 
the critical line, diverges logarithmically or with an exponent w <0.15 at the tricritical 
point and diverges with an exponent w = 4 in the vicinity of the first-order line. 

Thus the critical behaviour of WO is not governed by the bulk correlation length. 
This is also the case for the interfacial wetting transition of the chiral Potts model 
(Huse and Fisher 1982) but not for the three-state Potts model. 

Using a modified version of the Muller-Hartmann and Zittartz approximation we 
studied various sections of the phase diagram of the BEG model. The method provides 
a simple and rather precise way of estimating critical transition temperatures and lines 
of three-phase coexistence. 
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